
August 2017

Assessment Design Patterns for Computational

Thinking Practices in Exploring Computer Science

Authors
Eric Snow, Carol Tate, Daisy Rutstein, Marie Bienkowski, SRI International

Acknowledgments
This work originated in a December 2011 workshop supported by a National Science Foundation
(NSF) planning grant. Attending the workshop was an interdisciplinary group of experts who
gave us guidance on modeling the computational thinking domain for the purposes of designing
assessments. Meeting participants included experts in assessment and evidence-centered design:
Irvin Katz, Ph.D., Educational Testing Service; Drs. Britte Cheng and the late Geneva Haertel, SRI
International; and Gail Chapman, University of California at Los Angeles/Into the Loop. Others were
experts in computational thinking, computer science, and innovative ways of delivering content
in both school and afterschool settings: Drs. Maggie Johnson, Google; Alexander Repenning,
University of Colorado, Boulder; Chris Stephenson, Google (formerly at the Computer Science
Teachers Association [CSTA)]); and Melissa Koch, M.A., Anita Borg Institute (formerly at SRI).
Representing the Exploring Computer Science curriculum research and development project
were Joanna Goode, Ph.D., University of Oregon; Jane Margolis, Ed.D., and Noelle Griffin, Ph.D.,
UCLA; Jenna Masser, CSTA; and Suyen Moncada-Machado, Los Angeles Unified School District.
Experts in program evaluation, especially of information technology- and computer science-
oriented curriculum, provided guidance on the use of assessments in research and evaluation:
Girlie Delacruz, Ph.D., UCLA/CRESST; Jill Feldman, Ph.D., Westat; and Shaileen Pokress, Ed. M.,
Project Lead the Way.

After the planning grant and under a new NSF grant in July 2013, early versions of the Exploring
Computer Science assessment design patterns were reviewed by an expert panel consisting of
Dr. Katz and Drs. Lucia Dettori, Chris Schunn, David Reed, and Cindy Hmelo-Silver. The patterns
were also reviewed during a meeting in November 2014 by that grant’s advisory board members,
Drs. Dan Garcia, UC Berkeley; Jill Denner, ETR Associates; Drew Gitomer, Rutgers University; and
Terry Vendlinski, TVATE (formerly at SRI).

For information on our more general computational thinking design patterns, a companion report is
available from SRI: Design Patterns for Computational Thinking in Secondary Computer Science
available from https://pact.sri.com/resources.html

This material is based on work supported by the National Science Foundation
under Grant Nos. CNS-1132232, CNS-1240625, and DRL-1418149. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
National Science Foundation or any collaborator or partner named herein.

Suggested Citation
Snow, E., Tate, C., Rutstein, D., & Bienkowski, M. (2017). Assessment Design Patterns for
Computational Thinking Practices in Exploring Computer Science. Menlo Park, CA: SRI
International.

© Copyright 2017 SRI International.

https://pact.sri.com/resources.html

Contents

Introduction	 1

Computational Thinking in Exploring Computer Science 	 3

Evidence-Centered Design	 4

Moving from Design Patterns to Assessment Tasks	 12

Summary and Next Steps	 13

References	 15

Appendix: Exploring Computer Science Design Patterns
and Example Assessment Tasks	 16

Unit 1: Human Computer Interaction	 16

Unit 1 Assessment Item Example: What is a computer?	 23

Unit 2: Problem Solving	 24

Unit 2 Assessment Item Example: Food Bank	 30

Unit 3: Web Design	 31

Unit 3 Assessment Item Example: Stella’s Shirts	 37

Unit 4: Introduction to Programming	 38

Unit 4 Assessment Item Example: Scratch Dancer	 45

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 1

Exploring Computer Science (ECS) is an
introductory course designed to provide high school
students an accessible entry point to computing
and a pathway to college-level study in computer
science (http://www.exploringcs.org/). ECS was
created in response to research showing extremely
low participation in computing by girls and students
of color. ECS attempts to address this inequity with
a three-pronged approach: a yearlong curriculum,
ongoing professional development for teachers, and
policy initiatives to support adoption of introductory
computer science courses. Introduced in Los
Angeles in 2008, ECS has expanded rapidly across
the nation with the support of the National Science
Foundation (NSF).

ECS differs from earlier introductory computer
science courses in that its goal is not simply to
teach students to code in a particular programming
language. Rather, ECS is designed to teach
foundational computer science concepts and to
engage students in computational thinking practices.
ECS presents computer science as a creative
endeavor, emphasizing that technology is a tool for
solving problems and that computing has a social
impact. Through the active, inquiry-based lessons
and activities, students develop computational
thinking skills by exploring topics that are relevant to
their lives.

To teach ECS effectively, educators must
understand what students know about computing
and how learning progresses. Assessing learners’
knowledge of new definitions and programming
language commands is relatively straightforward,
but discerning how they use computation to
frame and solve problems and design creative
computational artifacts is far more challenging.
Assessing how learners apply their computational
knowledge means searching for evidence of deeper

understanding of the connection between problems
to solve and the comprehension and production
of coded solutions. In short, it means assessing
computational processes as well as computational
products. Assessments tuned to the ECS curriculum
must measure this deeper learning and must also
reflect the dedication to equity and inquiry-based
instruction that are foundational to the program.

How, then, can we best support the design and
development of assessments that measure
how students think about problem solving with
computation, apply abstraction, understand
computational work, and design and implement
creative solutions to problems?

This report provides an overview of a principled
approach to designing assessment tasks that
can generate valid evidence of students’ abilities
to think computationally. Computational thinking
refers to the core disciplinary ideas and ways of
knowing that constitute computer science. Principled
assessment means designing assessment tasks
to measure important knowledge and practices by
specifying chains of evidence that can be traced
from what students do (observable behaviors) to
claims about what they know. This approach to
assessment produces documents called design
patterns, which serve as a template for designing
tasks to elicit evidence of a students’ ability in
constructs of interest. Design patterns are meant
to be generative of multiple tasks and to guide the
design and development of assessments to measure
both knowledge and skills in the context of specific
learning experiences.

Introduction

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 2

The design patterns presented in this report were
developed under the project Principled Assessment
of Computational Thinking (PACT). The long-term
objectives in the ongoing PACT suite of projects
(NSF awards CNS-1132232, CNS-1240625, CNS-
1433065, CNS- 1640237, and DRL-1418149) are as
follows:

•	 Analyze and model the computational thinking
domain to elicit its underlying knowledge
and skills and develop artifacts— standards
mappings, design patterns, and tasks—to
shape the assessment design and development
process.

•	 Develop and validate measures of computational
thinking by instantiating design patterns in the
context of specific curricula to guide assessment
design up to and including implementation, with
an emphasis on delivering assessments online.

•	 Use assessments and other measures to
identify the implementation factors for ECS and
other computer science curricula that influence
secondary students’ learning of computational
thinking.

•	 Investigate the design and delivery of high-quality
assessment literacy materials and sustainable,
ongoing training as part of the ECS teacher
professional development workshops.

To reach these objectives, SRI International pursued
the following specific short-term goals:

•	 Create design patterns for the major
computational thinking practices covered in
ECS that can be used to design and refine
assessments as the curriculum evolves.

•	 Develop templates for tasks to assess
computational thinking practices in the context of
ECS.

•	 Create, pilot-test, and validate four unit
assessments (ECS Units 1–4) and a cumulative
assessment (across Units 1–4) and deliver these
assessments online.

This report addresses the first short-term goal
by presenting a set of design patterns that are
intended to support the design and development of
assessment tasks for the ECS curriculum. This set of
design patterns models the foundational knowledge
and skills that underlie the first four units of ECS:

1.	 Human Computer Interaction

2.	 Problem Solving

3.	 Web Design

4.	 Introduction to Programming.

We omitted ECS Units 5 and 6 because they
reinforce and apply concepts from prior units and are
implemented by secondary teachers in widely varying
ways.

The next section provides an orientation to
computational thinking in the ECS curriculum.
Then we explain the evidence-centered design
approach, detailing the development of the design
pattern elements with an illustrative example of an
assessment task. The appendix presents the design
patterns for the first four ECS units.

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 3

Computational Thinking in Exploring Computer Science

As computing has evolved from a tool for solving
equations and analyzing data to a way of discovering
new knowledge, it has transformed how science
is practiced in fields from biology and physics to
economics and business management (Denning,
2007). Computational thinking is increasingly being
recognized as an essential form of literacy for
informed citizens in the modern world, as well as a
way to investigate natural processes (Szalay & Gray,
2006). Although definitions of computational thinking
vary (Grover & Pea, 2013), they generally include
these practices:

formulating problems in a way that enables us
to use a computer and other tools to help solve
them; logically organizing and analyzing data;
representing data through abstractions such as
models and simulations; automating solutions
through algorithmic thinking (a series of ordered
steps); identifying, analyzing, and implementing
possible solutions with the goal of achieving the
most efficient and effective combination of steps
and resources; and generalizing and transferring
this problem solving process to a wide variety of
problems. (Barr, Harrison, & Conery, 2011, p. 21)

Exploring Computer Science was created under NSF
funding as a pre-Advanced Placement (AP) course
that prepares students for future engagement in
computer science education and careers. The course
was founded on the idea that the route to computer
science study should not begin with an advanced,
exam-driven course (Margolis, Goode, & Chapman,
2015). ECS is intended to provide a path to college-
level computer science by scaffolding students’
developing computational thinking skills with activities
that engage their prior knowledge and interests. By
emphasizing the social and ethical dimensions of
computing and by using an inquiry-based approach
to learning computational thinking practices, ECS
demonstrates the connections between computing

and students’ everyday lives. The ECS view on
programming instruction is in line with that of other
K–12 stakeholders whose definitions of computational
thinking downplay an exclusive focus on programming
skills and instead emphasize the problem solving and
data representation aspects of computing.

ECS lessons focus on the computational thinking
practices drawn from a proposed AP course in
computer science (Arpaci-Dusseau et al., 2013) that
capture the core ideas of computing:

•	 Apply abstractions and models.

•	 Analyze one’s own computational work and the
work of others.

•	 Design and implement creative solutions and
artifacts.

•	 Analyze the effects of developments in
computing.

•	 Communicate computational thought processes,
procedures, and results to others.

•	 Collaborate with peers on computing activities.

Definitions of computational thinking and course
objectives from ECS are important starting points
for developing assessment materials targeting
the construct of computational thinking, but
they are insufficient for developing assessment
tasks. Translating these objectives into specific
learning targets that are amenable to valid, reliable
measurement requires a complementary approach,
as outlined in the next section.

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 4

SRI specializes in using evidence-centered design (ECD)
to develop assessments for hard-to-assess constructs.
ECD is especially helpful when the knowledge and skills
to be measured involve complex, multistep performances,
such as those required in computational thinking. ECD
helps to translate broad learning goals into statements
of student ability and to describe the kinds of tasks that
would elicit evidence of that ability. ECD also provides
guidance on how the evidence can be aggregated to
produce a model of what the student knows and can do.
Our experience in difficult-to-assess domains1 has been
that the considerable up-front design work that ECD
requires lays the groundwork for efficiently generating
families of assessment items.

ECD makes explicit and provides the tools for
the building of assessment arguments (Mislevy &
Riconscente, 2006; Mislevy, Steinberg, & Almond,
2003). Messick (1994) summarized the essence of the
assessment argument as follows:

1 �For examples of domains where ECD has been applied, see DeBarger and Snow (2010) for life sciences; Mislevy, Riconscente, and
Rutstein (2009) for model-based reasoning; and Cheng, Ructtinger, Fujii, and Mislevy (2010) for systems thinking.

A construct-centered approach would begin by
asking what complex of knowledge, skills, or other
attributes should be assessed, presumably because
they are tied to explicit or implicit objectives of
instruction or are otherwise valued by society. Next,
what behaviors or performances should reveal
those constructs, and what tasks or situations
should elicit those behaviors? Thus, the nature of
the construct guides the selection or construction of
relevant tasks as well as the rational development of
construct-based scoring criteria and rubrics. (p. 16)

ECD is typically described in terms of five layers of work
(Mislevy & Haertel, 2006). These layers and examples
of key entities/artifacts created along the way are
shown in Exhibit 1. Although the layers suggest steps
in a sequential design process, cycles of iteration and
refinement are intended, both within and across layers,
and work in different layers can occur simultaneously.

Evidence-Centered Design

ECD Layer Role Key Entities & Examples

Domain analysis Gather substantive information about the
computational thinking domain of interest that has
implications for assessment; how knowledge is
constructed, acquired, used, and communicated

ECS concepts and terminology (e.g., abstraction,
algorithms, debugging); tools (programming
languages); representations (storyboards); and
situations of use

Domain modeling Express assessment argument in narrative form
based on information from domain analysis

Specification of knowledge, skills, and other
attributes to be assessed (e.g., describe result
of running a program on given data); features of
situations that can evoke evidence (find errors
in programs); kinds of performances that convey
evidence (use of sorting algorithms)

Conceptual
assessment
framework

Express assessment argument in structures and
specifications for tasks and tests, evaluation
procedures, measurement models

Student, evidence, and task models; student,
observable, and task variables; rubrics;
measurement models; test assembly specifications;
task templates and task specifications

Assessment
implementation

Implement assessment, including presentation-
ready tasks and calibrated measurement models

Tasks, task materials (including supporting
materials, tools, affordances); pilot test data to hone
evaluation procedures and fit measurement models

Assessment
delivery

Coordinate interactions of students and tasks: task-
and test-level scoring; reporting

Tasks as presented; work products as created;
scores as evaluated

Source: Adapted from Haertel et al. (2016).

Exhibit 1. The Five Layers of Evidence-Centered Design and Key Entities for Computational Thinking

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 5

This report presents work in the domain analysis and
domain modeling layers of ECD and describes how
these processes were applied to create assessments
of computational thinking practices for ECS Units 1–4.
Domain analysis helped us identify and define how
the core computational thinking practices aligned with
the learning objectives for the ECS units, and domain
modeling resulted in design patterns that specified
elements for ECS assessment design.

Domain Analysis
The main activity for domain analysis is reviewing
available information on the topic of interest and how
it is learned. For the work reported here, we were
primarily interested in analyzing computational thinking
practices as they were represented in the first four
units of the ECS curriculum. Because we had already
produced design patterns for computational thinking
practices (CTP) as part of a previous PACT project,
we had a considerable start on the domain modeling
phase. The CTP design patterns were developed
beginning in 2011 through consultation with various
experts and working groups in computer science
education and assessment (see Bienkowski, Snow,
Rutstein, & Grover, 2015 for details). The domain

analysis for the ECS design patterns included analysis
of these CTP design patterns, as well as a thorough
review of the learning objectives and lesson activities
specified in the ECS curriculum. We also sought input
from the curriculum design team and experienced ECS
teachers. A panel of experts and advisors provided
additional critical feedback (see Acknowledgments).

Domain Modeling
Domain modeling in ECD produces narrative
descriptions of a domain for measurement, including
specification of what is to be learned and what
kinds of tasks and performances could be used to
demonstrate that learning. Design patterns are a
product of the domain modeling process. Design
patterns consist of elements specifying all or part
of a construct domain or subdomain in terms of
the knowledge and skills to be measured, the
observations or behaviors that can be used as
evidence of knowledge and skills in that domain,
and the tasks or activities that elicit the desired
observations or behaviors (Mislevy & Riconscente,
2006). Exhibit 2 provides general descriptions of the
elements that appear in all design patterns.

Element Title Element Description

Focal knowledge,
skills, and
other attributes
(FKSAs)

•	 The primary KSAs targeted by the design pattern and what we want to make inferences about.
•	 For our initial work on computational thinking practices, we focused on skills rather than knowledge.

Additional KSAs

•	 Other KSAs that may be required for successful performance on the assessment tasks but are not the
target skills that we are trying to assess.

•	 For computer science, this may include knowledge of mathematics or programming languages and tools.
•	 Additional KSAs may also be used to link across design patterns to show the interdependencies

among skills.

Potential
observations

•	 Features of the things students say, do, or make that constitute the evidence on which the inference
about a student’s performance will be based.

•	 Potential observations are described using such qualities as accuracy, degree, completeness, and precision.
Potential work
products

•	 Some possible artifacts or observations that one could see.
•	 Work products are the artifacts scored during the assessment process.

Characteristic
features

•	 Aspects of assessment situations that are likely to evoke the desired evidence or that are required to
support the task.

Variable features •	 Aspects of assessment situations that can be varied in order to shift difficulty or emphasis.

Exhibit 2. Design Pattern Elements

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 6

These elements specify the important ideas to
be measured, and they can be used, reused, and
refined to help generate many different forms of
assessments. For example, one pattern could be
used to generate a paper-and-pencil test, an online
interactive test, or a rubric to score computational
artifacts that students produce. Design patterns are
sufficiently general to guide measurement of learning
by traditional paper-pencil delivery, as well as by
dynamic computer-based assessments.

The ECS curriculum provides overview statements
of the content for each unit. The overviews for the
ECS design patterns, which are adapted from those
provided in v5 of the curriculum, are shown in Exhibit 3.

Additional design pattern elements specified during
domain modeling describe what is within and outside
the scope of the construct and give suggestions
and guidance for assessment developers. The main
elements of design patterns are described next.

ECS Unit Design Pattern Overview

1: �Human Computer
Interaction

This unit introduces students to the concepts of a computer and computing while investigating the
major components of computers and the suitability of these components for particular applications.
Students will experiment with Internet search techniques, explore a variety of websites and web
applications and discuss issues of privacy and security. Fundamental notions of Human Computer
Interaction (HCI) and ergonomics are introduced. Students will learn that “intelligent” machine
behavior is not “magic” but is based on algorithms applied to useful representations of information,
including large data sets. Students will learn the characteristics that make certain tasks easy or
difficult for computers, and how these differ from those that humans characteristically find easy
or difficult. Students will gain an appreciation for the many ways in which computing-enabled
innovations have had an impact on society, as well as for the many different fields in which they are
used. Connections among social, economic and cultural contexts will be discussed.

2: Problem Solving

This unit provides students with opportunities to become “computational thinkers” by applying a
variety of problem-solving techniques as they create solutions to problems that are situated in a
variety of computational contexts. The range of contexts motivates the need for students to think
abstractly and apply known algorithms where appropriate, but also create new algorithms. Analysis
of various solutions and algorithms will highlight problems that are not easily solved by a computer
and for which there are no known solutions. This unit also focuses on the connections between
mathematics and computer science. Students will be introduced to selected topics in discrete
mathematics including Boolean logic, functions, graphs and the binary number system. Students
are also introduced to searching and sorting algorithms and graphs.

3: Web Design

This unit prepares students to take the role of a developer by expanding their knowledge of
algorithms, abstraction, and web page design and applying it to the creation of web pages and
user documentation. Students will explore issues of social responsibility in web use. They will learn
to plan and code their web pages using a variety of techniques and check their sites for usability.
Students learn to create user-friendly websites. Students will apply fundamental notions of Human
Computer Interaction (HCI) and ergonomics.

4:� Introduction to
Programming

This unit introduces students to some basic issues associated with program design and
development. Students design algorithms and create programming solutions to a variety of
computational problems using an iterative development process in a blocks-based language such
as Scratch. Programming problems include mathematical and logical concepts and a variety of
programming constructs.

Exhibit 3. Design Pattern Overviews, ECS Units 1–4

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 7

Focal Knowledge, Skills, and
Attributes

Focal here means central or core—the knowledge,
skills, and other attributes related to the student that
we want to assess. The FKSAs should cover the main
ideas within the construct of interest. To illustrate the
level of detail used in a FKSA, we show five ECS
FKSAs in Exhibit 4.

Note that we deliberately express our FKSAs
as “Ability to…” in order to capture the focus on
practices, which we believe are best represented
as the application of skills. This is in contrast to
FKSAs that may be better captured as knowledge
statements. Complete modeling of a domain requires
both, however, and we are expanding our ECS design
patterns to include knowledge-focused FKSAs to
capture the computer science conceptual knowledge
underlying the practices.

The FKSAs describe practices that students should
be learning. We purposely restricted our vocabulary
for these abilities—the verbs that we use to describe
what students should be able to do—to a finite set

that we can measure. For example, rather than stating
our expectations in vague terms, such as “Students
will understand algorithms,” we have asked students
to state, explain, and compare. We do not prompt
students to recognize, but to name, identify, represent,
and describe. Students design and generate work
products and explain and justify their thinking.

Although we did not impose any hierarchy on these
abilities (as we are not describing a progression of
learning), we did use different verbs to differentiate
the degree to which students should be able to apply
their knowledge. For example, for some skills we
thought that it was enough for students to be able
to describe the phenomenon, whereas for others
we wanted students to be able to explain. For our
purposes, explanation includes drawing relationships,
engaging in interpretation, and comparing and
analyzing. In other areas, we indicate that students
should engage with the concepts at an even higher
level by stating the FKSAs as the ability to evaluate.
Evaluation encompasses explanation, justification,
and comparison. Exhibit 5 shows how some of the
Unit 2 FKSAs are embedded in a realistic scenario
about choosing afterschool clubs.

Exhibit 4. Example Focal Knowledge and Skills for ECS Unit 2: Problem Solving

1.	 Ability to state what an algorithm would output given a set of inputs

2.	 Ability to explain the inputs of an algorithm, how it operates on that input, and what the outputs are

3.	 Ability to evaluate the extent to which an algorithm solves a stated problem

4.	 Ability to compare the trade-offs between different algorithms for solving the same problem

5.	 Ability to create (using a narrative description or a representation) an algorithm that addresses a set of
specifications

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 8

Potential Observations and Work
Products
After delineating the FKSAs underlying a construct,
we specify what we could observe the student doing
or producing and how those behaviors or artifacts
could provide evidence of the FKSAs.

Potential observations and associated work products
are shown in Exhibit 6 for the same afterschool
clubs task in Exhibit 5, displaying the student’s
checked boxes and open-text response. Note that by
“potential,” we intend to capture the idea that these
elements can and should evolve as we learn more
about teaching and learning in computer science.

Often the potential work products are what it is the
student might actually produce, while the potential
observations are the basis for the rubrics that would
be developed to score these products.

Evaluating students’ computational thinking is not
simply a matter of looking for correct solutions to
computational problems. There is often more than
one correct solution and more than one way to
approach a problem or task. We are more interested
in students’ thinking processes than their final
product. We also look for appropriateness and the
degree to which a work product exhibits a given
characteristic. The potential observations list these
characteristics of student work, and they are further
elaborated in the scoring rubrics.

Exhibit 5. Example Focal KSAs of an Assessment Task in ECS Unit 2: Problem Solving

Example FKSAs
Ability to state what an
algorithm would output
given a set of inputs

Ability to evaluate the extent
to which an algorithm solves
a stated problem

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 9

Characteristic and Variable
Features
In designing tasks, once we have thought about
what it is we might want students to produce, we can
work backward to the features of tasks that would be
necessary to elicit the observations we are seeking.
It is also important to think about how a task can
be varied—to make it easier or harder or to remove
potential barriers such as those due to language or
culture. An ECD design pattern captures these as
characteristic and variable features.

Characteristic features specify the required features
of a task, features that must be present in order for
the task to elicit evidence of the FKSAs. Variable

features are features that may vary and may or may
not be present in a particular task measuring the
construct of interest. How features vary will depend
on the measurement goals for the task and may
involve changing the difficulty of an item or allowing
for additional KSAs to be measured within the same
task. Specifying the variable features ahead of time
helps to highlight decisions that should be made when
developing individual items. Exhibits 7 and 8 show how
the characteristic and variable features for the FKSA
“Ability to state what an algorithm would output given a
set of inputs” appear in the afterschool clubs task.

Exhibit 6. Example Potential Work Products, Potential Observations and Rubric Components for
an Assessment Task in ECS Unit 2: Problem Solving

Example Potential Work Products
The comparison of the trade-offs
between different algorithms for solving
a stated problem

Example Potential Observations
•	 Appropriateness of the evaluation
•	 Appropriateness of the comparison
•	 Appropriateness of the explanation

Example Rubric Components
1 point for selecting Method 2

1 point for providing an appropriate
explanation that supports use of Method
2 over Method 1 

An appropriate explanation must include a
benefit of Method 2 or a disadvantage of
Method 1 (e.g., more people in Method 2 get
their first choice or some students in Method
1 get their third choice while no students in
Method 2 get their third choice).

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 10

Exhibit 7. Example Characteristic Feature for an Assessment Task in ECS Unit 2: Problem Solving

Example Characteristic
Feature
The presence of an algorithm
and a set of inputs is a
characteristic feature of the
task; the particular nature of
the algorithm and inputs may
vary.

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 11

Exhibit 8. Example Variable Features for an Assessment Task in ECS Unit 2: Problem Solving

Example Variable
Feature
The complexity of the
algorithm and the number
of outputs required are
also variable, allowing for
adjustments in difficulty.

The degree of scaffolding
provided in the task
determines the level of
cognitive load.

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 12

When domain analysis and domain modeling are
complete, the assessment argument represented in
design patterns is further described as specifications
for tasks and assessments, evaluation procedures,
and measurement models. In this ECD layer, known
as the conceptual assessment framework (see Exhibit
1), the nuts and bolts of how an assessment will
become operational are determined. Assessment
designers decide which FKSAs the tasks will cover
and what modifications (if any) need to be done to
make them align with particular learning objectives
in a curriculum. At this stage, the FKSAs from the
design patterns are expressed as variables that
characterize the student model.

Designers also articulate an evidence model, detailing
how tasks will be scored, what measurement models
will be applied to the scores, and the meaning of the
scores. It is the combination of these two models—
student and evidence—that defines precisely what will
be inferred about the student’s performance based
on the assessment. Assessment designers also
define the task model at the conceptual assessment
framework layer. The task model specifies the number
and types of tasks to be included and describes the
specific requirements of the assessment, such as
the format of the items (e.g., paper and pencil) and
practical details of administration such as the amount
of time a student has to complete it.

Note that the student, evidence, and task
models are not created in a strict linear manner;
rather, assessment designers refine the models
simultaneously, iterating among them to bring them
into alignment and to prepare a logically coherent
foundation for the new assessment. Thus, as the task
model is created, it may influence the earlier work on
the student and evidence models.

Finally, in the assessment implementation and
delivery layers, items and assessment forms are
developed, reviewed, and validated in accordance
with standards for validity (American Educational
Research Association, American Psychological
Association, & National Council on Measurement in
Education, 2014). For example, early piloting work can
include think-alouds with students as they complete
the tasks, expert reviews, and pilot testing with a
sample of students close to the target population to
calibrate the item difficulty and determine whether
differences exist among subgroups of students (e.g.,
differential item functioning analyses; see Osterlind
& Everson, 2009). Later field-testing may involve
larger and more diverse samples of students. Further
psychometric work would be conducted at that point.

Moving from Design Patterns to Assessment Tasks

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 13

Summary and Next Steps

Evidence-centered design guides our collection
of evidence for building a validity argument for the
ECS assessments. The SRI team has conducted
two years of pilot testing as part of the CS3 study
(DRL-1418149) and expects to release a technical
report with preliminary validity evidence during
summer 2017.

The design patterns currently focus on
computational thinking practices and therefore do
not cover all of the knowledge also required for
engaging in computational thinking. This is in part
because computational thinking practices can be
engaged in in different contexts, so depending on
the context or content area, the knowledge required
may be different. When developing an assessment
for a particular content area, it is important to
identify the knowledge that may go along with the
practices. By attending to both context and relevant
knowledge, the assessment developer can create
tasks that discern whether a student is struggling
with conceptual knowledge or with computational
practices. For building assessments of practices,
the domain-specific knowledge may serve as an
additional rather than a focal knowledge or skill.
Such items would provide classroom teachers with
diagnostic information.

To this end, the SRI team is in the process of
extending the ECS design patterns to include FKSAs
for the computer science conceptual knowledge
underlying the computational thinking practices
in each unit and leveraging the revised design
patterns to guide the development of multiple-choice
assessment items measuring the computer science
conceptual knowledge. We are also exploring
the integration of dynamic, interactive features
in some of these assessment items. Finally, we
are developing an item bank to house all the ECS

assessment items in a web-based, searchable
format. Initially, ECS teachers will be able to log
in to the item bank, search for items by curriculum
unit and learning objective, review items, and
download assessment forms. Future iterations will
also allow ECS teachers to search for items aligned
with relevant standards (e.g., Computer Science
Teachers Association [CSTA]) and to build their
assessments to particular uses (e.g., formative vs.
summative evidence). The new items and item bank
will be developed and piloted during the 2017–18
school year and will be available to ECS teachers
starting the 2018–19 school year.

The ECS assessment tasks were purposely
designed to each include several short constructed-
response questions, which are more complex and
time-consuming to score than multiple-choice
questions. To address this challenge, SRI is
exploring the application of an automated scoring
engine. This engine would take in student responses
and provide individual scores for the students. Initial
tests have shown promise in that the degree to
which the scores from the engine matched human
scorers’ final scores was similar to the degree that
multiple human scorers agreed with each other.

We also know that ECS teachers struggle with
effectively using assessment results to guide their
instruction. To help ECS teachers address this
challenge, SRI is launching a new study, Teacher
Assessment Literacy for Exploring Computer
Science (TALECS; CNS – 1640237), to investigate
the design and delivery of high-quality assessment
literacy materials and sustainable ongoing training
as part of the ECS teacher professional development
workshops. As computer science education reform
efforts scale nationally, it will be essential to equip
teachers new to the discipline with the skills and

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 14

knowledge they need to gather evidence of student
learning and design experiences to move it forward.
More information about the study can be found at
http://pact.sri.com/projects.html.

Our experience is that a rigorous and principled
approach to assessment design yields not only valid
assessments of well-defined knowledge and skills,
but also templates for new sets of assessments that
can be used to measure the same knowledge or
skills. The design patterns described in this report
represent a first step to building such templates so
that computational thinking practices in the ECS
curriculum can be assessed with different delivery
formats.

https://pact.sri.com/projects.html

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 15

References

American Educational Research Association,
American Psychological Association, & National
Council on Measurement in Education. (2014).
Standards for educational and psychological
testing. Washington, DC: American Educational
Research Association.

Arpaci-Dusseau, A., Astrachan, O., Barnett, D.,
Bauer, M., Carrell, M., Dovi, R., … Uche, C.
(2013). Computer science principles: Analysis
of a proposed advanced placement course. In
Proceeding of the 44th ACM technical symposium
on computer science education (pp. 251–256).
ACM. https://doi.org/10.1145/2445196.2445273

Barr, D., Harrison, J., & Conery, L. (2011).
Computational thinking: A digital age skill for
everyone. Learning & Leading with Technology,
38(6), 20–23. Retrieved from http://eric.
ed.gov/?id=EJ918910

Bienkowski, M., Snow, E. B., Rutstein, D. W., &
Grover, S. (2015). Assessment design patterns for
computational thinking practices: A first look. Menlo
Park, CA: SRI International. Retrieved from http://
pact.sri.com/resources.html

Cheng, B. H., Ructtinger, L., Fujii, R., & Mislevy, R.
(2010). Assessing systems thinking and complexity
in science (large-scale assessment technical report
7). Menlo Park, CA: SRI International.

DeBarger, A. H., & Snow, A. (2010). Design pattern
on model use in interdependence among living
systems (large-scale assessment technical report
13). Menlo Park, CA: SRI International.

Denning, P. J. (2007). Computing is a natural science.
Communications of the ACM, 50(7), 13–18.

Grover, S., & Pea, R. (2013). Computational
thinking in K–12: A review of the state of the field.
Educational Researcher, 42(1), 38–43.

Haertel, G. D., Vendlinski, T. P., Rutstein, D.,
DeBarger, A., Cheng, B. H., Snow, E. B., …
Ructtinger, L. (2016). General introduction to
evidence-centered design. In H. Braun (Ed.),
Meeting the challenges to measurement in an era
of accountability (pp. 107–148). New York, NY:
Routledge.

Margolis, J., Goode, J., & Chapman, G. (2015).
An equity lens for scaling: A critical juncture for
exploring computer science. ACM Inroads, 6(3),
58–66.

Messick, S. (1994). The interplay of evidence and
consequences in the validation of performance
assessments. Educational Researcher, 23(2),
13–23.

Mislevy, R. J., & Haertel, G. D. (2006). Implications of
evidence-centered design for educational testing.
Educational Measurement: Issues and Practice,
25(4), 6–20.

Mislevy, R. J., & Riconscente, M. M. (2006).
Evidence-centered assessment design. In T. M.
Haladyna & S. M. Downing (Eds.), Handbook of
test development (pp. 61–90). New York, NY:
Routledge.

Mislevy, R. J., Riconscente, M. M., & Rutstein, D. W.
(2009). Design patterns for assessing model-based
reasoning (large-scale assessment technical report
6). Menlo Park, CA: SRI International.

Mislevy, R. J., Steinberg, L. S., & Almond, R.
G. (2003). Focus article: On the structure of
educational assessments. Measurement:
Interdisciplinary Research and Perspectives, 1(1),
3–62.

Osterlind, S. J., & Everson, H. T. (2009). Differential
item functioning (2nd ed., Vol. 161). Thousand
Oaks, CA: SAGE.

Szalay, A., & Gray, J. (2006). 2020 Computing:
Science in an exponential world. Nature,
440(7083), 413–414.

Assessment Design Patterns for Computational Thinking Practices 16

In this section, we present the design pattern elements for each of the first four foundational ECS units along
with example assessment tasks aligned with those elements:

•	 Unit 1: Human Computer Interaction

•	 Unit 2: Problem Solving

•	 Unit 3: Web Design

•	 Unit 4: Introduction to Programming

Unit 1: Human Computer Interaction

Overview
This unit introduces students to the concepts of a computer and computing while investigating the major
components of computers and the suitability of these components for particular applications. Students will
experiment with Internet search techniques, explore a variety of websites and web applications and discuss
issues of privacy and security. Fundamental notions of Human Computer Interaction (HCI) and ergonomics
are introduced. Students will learn that “intelligent” machine behavior is not “magic” but is based on
algorithms applied to useful representations of information, including large data sets. Students will learn the
characteristics that make certain tasks easy or difficult for computers, and how these differ from those that
humans characteristically find easy or difficult. Students will gain an appreciation for the many ways in which
computing-enabled innovations have had an impact on society, as well as for the many different fields in
which they are used. Connections among social, economic and cultural contexts will be discussed.

Focal KSAs

About Computers
1.	 Ability to explain why an object is or is not a computer
2.	 Ability to evaluate a computer for the suitability to a particular application
3.	 Ability to compare the components of two or more computers for the suitability to a particular

application

About Computation
4.	 Ability to explain why an activity or task is or is not an example of a problem a computer can solve

Using the Web
5.	 Ability to use web resources to find information
6.	 Ability to evaluate whether a particular web-based resource meets the needs of a user or problem

Appendix: Exploring Computer Science Design
Patterns and Example Assessment Tasks

Assessment Design Patterns for Computational Thinking Practices 17

7.	 Ability to explain the extent to which results of a web search are trustworthy
8.	 Ability to explain how the results of a web search meet the purpose of the search
9.	 Ability to compare the results from multiple web searches based on criteria

Impacts of Computing
10.	 Ability to evaluate how computing impacts different contexts
11.	 Ability to describe the benefits of computing innovations
12.	 Ability to explain how computing innovation has led to new types of legal, ethical and privacy

concerns

Communication and Data Exchange
13.	 Ability to explain the relationship between communication, data exchange, and/or computing devices
14.	 Ability to evaluate the implications of a form (or various forms) of data exchange (communication) on

social interactions (including security and privacy concerns)
15.	 Ability to evaluate/compare how specific representations of data are used to communicate information

Computer Programs and Machine Intelligence
16.	 Ability to describe or demonstrate the characteristics of a computer program
17.	 Ability to describe the difference between intelligence as it relates to humans and computers

Characteristic Features

About Computers
•	 The student must be presented with an object.
•	 The object must have clear characteristics that allow the evaluation of whether it is a computer.
•	 The task must provide the student with information about a computer and information about the

application it will be used for.

About Computation
•	 The student must be presented with an activity or task.

Using the Web
•	 The student must be given a specific set of information to find.
•	 The task must include information about the web-based resource and the need.
•	 The task must involve one web search or the results of a web search.
•	 The task must involve one web search.
•	 The task must present a collection of web sites as the result of one search.
•	 The task must involve at least two web searches.

Impacts of Computing
•	 The task must involve one or more contexts outside of traditional computing, computer science or engineering.

Assessment Design Patterns for Computational Thinking Practices 18

Communication and Data Exchange
•	 The task must ask the students to relate forms of communication with computing devices.
•	 The task must provide the student with a particular form of data exchange.
•	 The task does not include specific representations of data.
•	 The task must provide a specific representation of data (for evaluate) and multiple representations of data

(for compare).

Computer Programs and Machine Intelligence
•	 The task must provide an example of a computer program.

Variable Features

About Computers
•	 Whether the object could be considered a computer or not
•	 Whether students would be able to argue either way if the object is a computer or not
•	 The number and type of characteristics that would indicate whether the object is a computer
•	 The degree to which characteristics of the object consistently suggest a computer vs. not
•	 The degree to which the important characteristics are explicitly stated in the problem or must be inferred

by the test taker
•	 Type of application
•	 Level of details specified about the application and the computer
•	 Knowledge of particular computer components required

About Computation
•	 Whether the activity or task could be considered computing or not
•	 Whether students would be able to argue either way about if the activity or task was an example of

computing

Using the Web
•	 The format of the report of the student’s search and resulting information
•	 The type of information wanted (along with which web resources would be most appropriate for finding

this information)
•	 The web resources available to the students
•	 The number of searches the student is allowed to perform to find the information
•	 The web-based resource
•	 The needs of the user or problem
•	 The degree to which the web-based resource matches the needs of the user or problem
•	 The clarity with which the resources match the needs of the problem (i.e., level of inference required by

the test taker)

Assessment Design Patterns for Computational Thinking Practices 19

•	 The degree to which the results of a web search are trustworthy
•	 Whether students are provided the web search results or generate the results
•	 The amount of evidence required in the explanation
•	 Whether students are given the web search results or are asked to generate the results (Note: the latter

is not feasible for a unit test)
•	 The degree to which the results of the web search meet the purpose of the search
•	 The amount of explicit vs. implicit purposes in the problem; the degree to which different purposes have

higher priority than others
•	 Whether students are given the web search results or are asked to generate the results
•	 Whether the student is allowed to determine the criteria or it is given to them
•	 The degree to which the results of the web searches match the criteria
•	 The degree to which the results of the web searches match each other

Impacts of Computing
•	 The context or contexts
•	 Whether or not the students are given the context(s)
•	 The level of detail required in the explanation/comparison
•	 The number of contexts in which the innovation might apply
•	 The degree to which the context is familiar
•	 Whether students are given a particular computing innovation or asked to discuss computing in general
•	 The level of detail required of the explanation
•	 The degree to which the task separates legal, ethical and privacy concerns

Communication and Data Exchange
•	 Whether the task involves a specific computing device, or a specific example of communication, or if the

task is more general
•	 Whether the task explicitly asks students to address the concept of data exchange, or if this is an implicit

part of the task
•	 The form of data exchange provided
•	 The level of detail required in the explanation
•	 The representation used
•	 The amount and type of information that can be found from the representation
•	 Comparing the degree to which the representations are similar

Computer Programs and Machine Intelligence
•	 The degree to which the presented object is like a computer program
•	 Varying types of objects that function according to programs

Assessment Design Patterns for Computational Thinking Practices 20

Potential Observations

About Computers
•	 Appropriateness of the explanation of why an object is or is not a computer. (i.e., Did the student

correctly identify aspects of the object that relate to aspects of a computer? Did the student correctly
identify aspects of a computer that the object lacks?)

•	 Appropriateness of the evaluation of a computer for a particular application (i.e., Did the student correctly
identify the features of the computer that match (or do not match) the needs of the application? Did the
student support their judgment on the degree to which the computer matches the needs with evidence?)

•	 Appropriateness of the comparison of the components of two or more computers for a particular
application (i.e., Did the student correctly identify differences in the components of the computers that
relate to the application? Did the student correctly explain how the differences in the components affect
the suitability for the application?)

About Computation
•	 Appropriateness of the explanation of why an activity or task is or is not computing. (i.e., Did the student

correctly identify aspects of the activity or task that relate to aspects of computing, Did the student
correctly identify aspects of computing that the activity or task lacks?)

Using the Web
•	 Appropriateness of the web resources to the topic searched (i.e., Did the student use a web resource

that matches the problem/topic?)
•	 Degree to which the information found matches the information wanted
•	 Appropriateness of the evaluation of a web-based resource (i.e., Did the student describe aspects of the

web-based resource in relation to the needs of the user or problem? Did the student identify aspects of
the web-based resource that do not match the needs of the user or problem?)

•	 Appropriateness of the explanation of the extent to which results of a web search are trustworthy (i.e.,
Did the student include aspects of the web-page found from the search such as the source, the date, the
professionalism of the web-page? Did the student explain the relationship between these aspects and
the trustworthiness of the page)

•	 Appropriateness of the explanation of how the results of a web search meet the purpose of that search
(i.e., Did the student describe how the results meet the initial question being asked? Did the student
describe how the results do not meet the purpose of the search?)

•	 Appropriateness of the comparison of how the results of multiple web searches meet the purpose of that
search (i.e., Did the student explain the similarities and differences between the multiple search results?
Did the student relate those similarities and differences to set of criteria?)

Impacts of Computing
•	 Appropriateness of the explanation/comparison of how computing impacts different contexts (i.e., Did the

student include aspects of computing in their explanation? Did the student describe a context outside of
traditional computing, computer science, and engineering?)

Assessment Design Patterns for Computational Thinking Practices 21

•	 Appropriateness of the explanation (i.e., Did the student describe computing innovations? Did the student
relate these innovations to legal, ethical and/or privacy concerns?)

Communication and Data Exchange
•	 Appropriateness of the explanation of the relationship between communication, data exchange, and

computing devices (i.e., Did the student connect communication to data exchange? Did the student
explain how computing devices could be used for communication (as well as data exchange?)

•	 The appropriateness of the evaluation of the implications of a particular form of data exchange (i.e.,
Did the student discuss privacy concerns? Did the student describe social aspects of the form of data
exchange such as how personal the data exchange is? Did the student discuss benefits and drawbacks
of this form of data exchange? Did the student discuss tradeoffs between the different forms of data
exchange, including privacy concerns and social aspects? Did the student explain that different
representations might communicate different information?)

•	 Appropriateness of the evaluation/comparison (i.e., Did the student describe the type of information that
can be found from each representation? Did the student describe types of information that cannot be
found? For compare--Did the student explain the tradeoffs between the different representations?)

Computer Programs and Machine Intelligence
•	 Appropriateness of the explanation of what a computer program is (i.e., Did the student explain that a

computer program is stored in memory, fetched sequentially, and executed one by one?)
•	 Appropriateness of the description of intelligent behavior

Potential Work Products

About Computers
•	 An explanation of why an object is or is not a computer
•	 Evaluation of a computer for the suitability to a particular application
•	 Comparison of computers for the suitability to a particular application

About Computation
•	 An explanation of why an activity or task is or is not an example of computing

Using the Web
•	 The record of the student’s search
•	 The information the student found
•	 The evaluation of a web-based resource
•	 An explanation of the extent to which results of a web search are trustworthy
•	 An explanation of how the results of a web search meet the purpose of the search
•	 A comparison of how the results of multiple web searches meet a set of criteria

Assessment Design Patterns for Computational Thinking Practices 22

Impacts of Computing
•	 An explanation/comparison of how computing impacts different contexts
•	 An explanation of how computing innovation has led to new types of legal, ethical, and privacy concerns

Communication and Data Exchange
•	 An explanation of the relationship between communication, data exchange and computing devices
•	 The evaluation of the implications of a particular form of data exchange
•	 The comparison of the implications of various forms of data exchange
•	 An explanation of how representations of data are used to communicate information
•	 The evaluation/comparison of how specific representations of data are used to communicate information

Computer Programs and Machine Intelligence
•	 The explanation of a computer program
•	 A listing of the characteristics of a program
•	 A description of the problems a computer may have in interpreting instructions
•	 A description of intelligent and non-intelligent behaviors

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 23

Unit 1 Assessment Item Example: What is a computer?

• FKSA 1: Ability to explain why an object is or is not a computer

Assessment Design Patterns for Computational Thinking Practices 24

Unit 2: Problem Solving

Overview
This unit provides students with opportunities to become “computational thinkers” by applying a variety
of problem-solving techniques as they create solutions to problems that are situated in a variety of
computational contexts. The range of contexts motivates the need for students to think abstractly and apply
known algorithms where appropriate, but also create new algorithms. Analysis of various solutions and
algorithms will highlight problems that are not easily solved by computer and for which there are no known
solutions. This unit also focuses on the connections between mathematics and computer science. Students
will be introduced to selected topics in discrete mathematics including Boolean logic, functions, graphs and
the binary number system. Students are also introduced to searching and sorting algorithms and graphs.

Focal KSAs

Algorithms
1.	 Ability to state what an algorithm would output given a set of inputs
2.	 Ability to explain the inputs of an algorithm, how it operates on that input, and what the outputs are
3.	 Ability to evaluate the extent to which an algorithm solves a stated problem
4.	 Ability to compare the tradeoffs between different algorithms for solving the same problem
5.	 Ability to create (using a narrative description or a representation) an algorithm that addresses a set of

specifications

Problem Solving
1.	 Ability to describe the steps to solving a problem
2.	 Ability to evaluate how an approach/strategy solves a problem
3.	 Ability to enact the steps of a problem-solving process in order to address a need

Problem Solving with Computing
4.	 Ability to evaluate features of a task that made it appropriate as a computing problem

Math and Computer Science
5.	 Ability to explain connections between elements of mathematics and computer science
6.	 Ability to recognize patterns or describe patterns

Collaborative Problem Solving and Communication
7.	 Ability to solve a problem as a group by distributing the workflow among group members and then

combining the results
8.	 Ability to use multiple sources of feedback to develop a solution to a problem
9.	 Ability to communicate a problem, the solution process, and the final solution

Assessment Design Patterns for Computational Thinking Practices 25

10.	 Ability to collaboratively communicate a problem, the solution process, and the final solution

Characteristic Features

Algorithms
•	 The task must provide the student with an algorithm and a set of inputs.
•	 The task must provide the student with an algorithm.
•	 The task must provide students with information about the algorithm and the problem the algorithm is

addressing.
•	 The task must provide students with information about the algorithm and the problem the algorithm is

addressing.
•	 The task must provide a set of specifications.

Problem Solving
•	 The task must involve asking the students to explicitly describe steps in the problem solving process.
•	 The task must provide a problem to the student.
•	 The task must involve a problem and documentation of the problem solving process.

Problem Solving with Computing
•	 The task must provide a task to the student.

Math and Computer Science
•	 The task must explicitly ask students to discuss connections with mathematics.

Collaborative Problem Solving and Communication
•	 The task must have 2 or more people creating a problem solution.
•	 The task involves an already created problem solution.
•	 The task must include feedback on that problem solution.
•	 The task must specify the problem solution to be used in the communication.
•	 The task must provide guidelines for the format and length of the communication.
•	 The task must specify the problem solution to be used in the communication.
•	 The task must provide guidelines for the format and length of the communication.

Variable Features

Algorithms
•	 The algorithms being used
•	 The inputs to the algorithm
•	 The complexity of the algorithm and the inputs

Assessment Design Patterns for Computational Thinking Practices 26

•	 The number of outputs
•	 The outputs of the algorithm
•	 The complexity of the algorithm
•	 The information provided about the problem the algorithm will be used to solve
•	 The degree to which the algorithm solves the stated problem
•	 The degree to which each algorithm solves the problem
•	 The degree to which the two algorithms are similar to one another
•	 The amount and type of information provided about the problem and the algorithms
•	 The complexity of the set of specifications
•	 The representation required of the student

Problem Solving
•	 Whether students are asked to describe the steps in general or in the context of a specific problem
•	 The problem (and complexity of the problem) that is to be solved
•	 Whether the approach/strategy is provided to the student or generated by the student
•	 The degree to which the approach/strategy solves a problem
•	 The degree to which the approaches/strategies are similar
•	 The complexity of the problem
•	 The degree to which the steps in the process are documented
•	 The format of the documentation (e.g., oral accounts, written documentation)

Problem Solving with Computing
•	 The complexity of the task
•	 The degree to which the task is appropriate for a computing problem

Math and Computer Science
•	 Whether students are asked to explain connections in general or connections as related to a specific

problem
•	 The knowledge of mathematical concepts required
•	 The knowledge of computer science concepts required

Collaborative Problem Solving and Communication
•	 The number of members in a group
•	 The complexity of the problem solution to be designed
•	 The level of specifications provided to the group
•	 The complexity of the feedback
•	 The amount of disagreement of the feedback
•	 The source of the feedback

Assessment Design Patterns for Computational Thinking Practices 27

•	 The complexity of the initial problem solution
•	 The level of detail asked for in the communication
•	 The format of the communication (power point, poster, oral, written…)
•	 The length of the communication
•	 Audience for the communication
•	 The number of participants in the group

Potential Observations

Algorithms
•	 Correctness of the identified outputs
•	 Accuracy of the explanation of the parts of an algorithm (i.e., Did the student correctly identify the inputs

of an algorithm? Did the student correctly and completely describe the operations performed on those
inputs? Did the student correctly describe the outputs?)

•	 Appropriateness of the evaluation (i.e., Did the student evaluate the algorithm for the boundary cases as
well as for the general cases? Did the student make a correct judgment on whether or not the algorithm
solves the problem for these cases? Did the student support their judgments with an explanation?)

•	 Appropriateness of the comparison (i.e., Did the student compare the algorithms at the boundary cases
as well as at the general case, did the student make a correct judgment on whether or not each algorithm
solves the problem for these cases, did the student support their judgments with an explanation, did the
student state the trade-offs between the two algorithms)

•	 Appropriateness of the algorithm created (i.e., Does the algorithm meets the set of specifications? Does
the algorithm works at the boundary cases? Is the algorithm high level?)

Problem Solving
•	 Appropriateness of the description of the steps (i.e., Did the student clearly separate each of the steps in

their description: Understanding the problem, creating a plan, implementing the plan, review and reflect
on the solution? Did the student provide a clear description of each of these steps?)

•	 Appropriateness of the evaluation (i.e., Does the student discuss how the approach/strategy addresses
the problem? Does the student include the limitations of the approach/strategy? Does the student include
the tradeoffs between the different approaches/strategies?)

•	 The degree to which the problem solving process was followed when solving a problem (i.e., Do the
students demonstrate that they understood the problem? Did they create a plan and follow that plan? Did
they review their work?)

Problem Solving with Computing
•	 Appropriateness of the evaluation (i.e., Does the student correctly match features of the task to features

of a computing problem? Does the student identify limitations of computing when solving this task? Does
the student identify what features of the task make it unsuitable for computing, if any?)

Assessment Design Patterns for Computational Thinking Practices 28

Math and Computer Science
•	 Appropriateness of the explanation (i.e., Did the student identify elements of mathematics that are

related to computer science? Does the student include an explanation of the set of elements along with
specific examples?)

Collaborative Problem Solving and Communication
•	 Appropriateness of the division of workflow (i.e., Did all members have work to do? Was the work that

was assigned to each member appropriate and matches to that member’s skills?)
•	 Quality of the produced problem solution (i.e., Does the problem solution include all of the required

pieces? Does it solve the problem?)
•	 Appropriateness of the revisions to a problem solution based on provided feedback (i.e., Were all

comments addressed in some way? Were disagreements in feedback resolved?)
•	 Clarity of the communication (i.e., Was the description understandable? Was the communication

organized?)
•	 Completeness of the communication (i.e., Did the communication address all of the sections of the

problem solution? Was the description of the design process comprehensive?)”
•	 Degree of collaboration (i.e., Did each member of the group contribute to the communication?)
•	 Clarity of the communication (i.e., Was the description understandable? Was the communication

organized?)
•	 Completeness of the communication (i.e., Did the communication address all of the sections of the

problem solution? Was the description of the design process comprehensive?)

Potential Work Products

Algorithms
•	 The outputs of an algorithm
•	 The explanation of the algorithm
•	 The evaluation of the extent to which an algorithm solves a stated problem
•	 The comparison of the tradeoffs between different algorithms for solving a stated problem
•	 A representation of an algorithm

Problem Solving
•	 A description of the steps to solving a problem
•	 The explanation of how an approach/strategy solves a problem
•	 The comparison of how multiple approaches/strategies solves a problem
•	 Documentation of the problem solving process such as a description of the problem, a plan, a

description of how students followed the plan, and a review of the solution.

Assessment Design Patterns for Computational Thinking Practices 29

Problem Solving with Computing
•	 The evaluation of a task as a computing problem

Math and Computer Science
•	 The explanation of the connection between elements of mathematics and computer science

Collaborative Problem Solving and Communication
•	 The resulting problem solution
•	 A description or list of the assignment of the workflow
•	 The resulting problem solution
•	 A description of the comments and changes that were made and/or a description of how the comments

were addressed
•	 A communication (could be power point, could be oral, could be written) about a problem solution
•	 A documentation of how each member of the group contributed to the communication

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 30

Unit 2 Assessment Item Example: Food Bank

• �FKSA 2: Ability to explain the inputs of an algorithm, how it operates on that input, and
what the outputs are

• �FKSA 5: Ability to create (using a narrative description or a representation) an algorithm
that addresses a set of specifications

• �FKSA 8: Ability to follow the steps in a problem solving process in order to address a need

Assessment Design Patterns for Computational Thinking Practices 31

Unit 3: Web Design

Overview
This unit prepares students to take the role of a developer by expanding their knowledge of algorithms,
abstraction, and web page design and applying it to the creation of web pages and documentation for users
and equipment. Students will explore issues of social responsibility in web use. They will learn to plan and
code their web pages using a variety of techniques and check their sites for usability. Students learn to create
user-friendly websites. Students will apply fundamental notions of Human Computer Interaction (HCI) and
ergonomics.

Focal KSAs

Design and Implement Web Pages
1.	 Ability to create a set of specifications for a web page given the intent of the web page
2.	 Ability to design a web page based on specified objectives
3.	 Ability to implement a web page based on specified objectives
4.	 Ability to compare two web pages based on provided criteria
5.	 Ability to describe techniques used when designing and implementing a web page
6.	 Ability to compare different techniques used in designing and implementing a web page
7.	 Ability to use techniques when designing and implementing a web page
8.	 Ability to apply abstraction to separate style from content when designing and implementing a web

page

Evaluate and Debug Web Page Implementation
9.	 Ability to evaluate the extent to which a web page meets specified objectives
10.	 Ability to compare design decisions in relation to the user experience
11.	 Ability to identify errors in given web page code
12.	 Ability to explain why specific errors have occurred in web pages and how to correct them
13.	 Ability to correct errors in web page code

Collaborative Web Design and Communication
14.	 Ability to create a web page as a group by distributing the workflow among group members then

combining the results
15.	 Ability to use multiple sources of feedback to develop a web page
16.	 Ability to communicate the objectives of a web page, the design process and the web page
17.	 Ability to collaboratively communicate the objectives of a web-page, the design process, and the web

page

Assessment Design Patterns for Computational Thinking Practices 32

Characteristic Features

Design and Implement Web Pages
•	 Each task must provide students with an overall intent for the web page.
•	 Each task must ask students to generate specifications.
•	 The task must specify the objectives of the web page.
•	 The task must provide information on the format requirements of the design.
•	 The task must provide students with the web-page and the objectives.
•	 The task must provide students with two web-pages and the criteria for the comparison.
•	 The task must specify a technique that can be used when designing and/or implementing a web page.
•	 The task must be about techniques used during web-page development.
•	 The task is about the implementation of a technique.
•	 The task must explicitly indicate to the students that they are separating style from content.

Evaluate and Debug Web Page Implementation
•	 The task explicitly indicates to the student that they must discuss the usability (but they don’t have to use

that term) of the web page.
•	 The task must include a web page with an error in it (the error should be straightforward to find for this

unit).
•	 The task must provide the error to the student.
•	 The task must ask the student to fix an error in web page code.
•	 The task must have 2 or more people creating a web page.

Collaborative Web Design and Communication
•	 The task involves an already created web page.
•	 The task must include feedback on that web page.
•	 The task must specify the web page to be used in the communication.
•	 The task must provide guidelines for the format and length of the communication.

Variable Features

Design and Implement Web Pages
•	 The intent of the web page, beyond the intent itself, one might vary the level of specificity or ambiguity

in the intent, the degree to which the intent could be achieved by multiple types of specifications, the
degree to which students must infer aspects of the intent (i.e., something important, but implicit).

•	 Can include practical, personal, and/or societal intents
•	 The level of detail required from the student in the set of specifications
•	 The format required of the specifications

Assessment Design Patterns for Computational Thinking Practices 33

•	 The amount of scaffolding provided for the development of the specifications
•	 The format the students should use for their design
•	 The level of detail needed for the design
•	 The complexity of the objectives
•	 The format of the response (i.e., The response should be more than just a checklist where students

check off if the web page meets an objective. The response could be a checklist with an explanation of
how each of the specifications was met or not met.)

•	 Complexity of the criteria
•	 Degree of similarity between the web pages
•	 Whether the technique is given to the student or the student is able to pick the technique
•	 Whether the techniques are given to the student or generated by the student
•	 The degree of similarity between the techniques
•	 Are students told which techniques to use, or are they allowed to pick (if they pick they need to identify

which technique they are using)
•	 The degree to which the documentation of the design of the web page is required
•	 The purpose of the web page
•	 The representation of the web page required
•	 The degree to which the documentation of the design of the web page is required
•	 The purpose of the web page

Evaluate and Debug Web Page Implementation
•	 The design decision(s) being compared
•	 The comparability of the design decision(s)
•	 The amount of context given for the task (how much does the student know about the web-page)
•	 The representation of the web-page code (are they given the web-page, or the html code or both?)
•	 The representation of the identification of the errors or the fix for the errors
•	 The level of complexity of the error
•	 The level of complexity of the fix for the error
•	 The number of members in a group
•	 The complexity of the web page to be designed
•	 The level of specifications provided to the group

Collaborative Web Design and Communication
•	 The complexity of the feedback
•	 The amount of disagreement of the feedback
•	 The source of the feedback
•	 The complexity of the initial web page

Assessment Design Patterns for Computational Thinking Practices 34

•	 The level of detail asked for in the communication
•	 The format of the communication (PowerPoint, poster, oral, written…)
•	 The length of the communication
•	 Audience for the communication
•	 The number of participants in the group

Potential Observations

Design and Implement Web Pages
•	 Completeness of the description of the specifications (i.e., Did the student include a discussion of the

relevant parts of a web page such as headings and menus?)
•	 Appropriateness of the set of specifications (i.e., How well do the specifications match the intent? Is the

student providing space for all of the relevant content information?)
•	 Appropriateness of the organization of the specifications (i.e., Did the student specify multiple pages? If

so, are there specifications for how the pages should be linked and/or navigated? Do the specifications
clearly state where to put different types of information?).

•	 Degree to which the design of the web page matches the specified objectives (i.e., Did the student
address and satisfy all of the objectives?)

•	 Completeness of the evaluation (i.e., Did the student include information on every objective?)
•	 Appropriateness of the evaluation (i.e., Did the student provide a reasonable explanation for their

evaluation? Did the student accurately reflect the web page in their evaluation?)
•	 Completeness of the comparison (i.e., Did the student include information on every objective?)
•	 Appropriateness of the comparison (i.e., Did the student provide a reasonable explanation of the

similarities and differences between the web-pages? Did the student accurately reflect the web pages in
their comparison?)

•	 Accuracy of the description of a technique used when designing and implementing a web-page (i.e.,
Did the student cover the main points of the technique? Does the student make it clear how to use a
technique and/or when this technique would be applied?)

•	 Completeness of the comparison (i.e., Did the student include information on the main similarities and
differences between the techniques?)

•	 Appropriateness of the comparison (i.e., Did the student provide a reasonable explanation of the
similarities and differences between the techniques? Did the student accurately reflect the techniques in
their comparison?)

•	 Correctness of the use of a technique in the design and implementation of a web page. (i.e., Did the
student design the web-page taking the technique into account? Did the student use the technique? If so,
did they implement it correctly?)

•	 Degree to which style is separated from the content in the design and/or implementation of a web-page
(i.e., Did the student use style sheets? Were there places on the web page where style was integrated
with the content that could have been separated?)

Assessment Design Patterns for Computational Thinking Practices 35

Evaluate and Debug Web Page Implementation
•	 Appropriateness of the comparison of the design decisions (i.e., Did the student discuss trade-offs of the

decisions? Does the explanation accurately reflect the design decisions?)
•	 Correctness of the identification of the errors
•	 Accuracy of the explanation for an error and the fix for that error (i.e., Did the student give a plausible

cause for the error? Would the fix they describe work?)
•	 Appropriateness of the fix (i.e., Did the fix address the error, did the fix correct the error? Did the fix

introduce new errors?)
•	 Appropriateness of the division of workflow (i.e., Did all members have work to do? Was the work that

was assigned to each member appropriate and matched to that member’s skills?)
•	 Quality of the produced web-page (i.e., Does the web-page include all of the required pieces? Is the style

of the web page consistent throughout?)

Collaborative Web Design and Communication
•	 Appropriateness of the revisions to a web-page based on provided feedback (i.e., Were all comments

addressed in some way? Were disagreements in feedback resolved?)
•	 Clarity of the communication (i.e., Was the description understandable? Was the communication

organized?)
•	 Completeness of the communication (i.e., Did the communication address all of the sections of the web-

page? Was the description of the design process comprehensive?)
•	 Degree of collaboration (i.e., Did each member of the group contribute to the communication?)

Potential Work Products

Design and Implement Web Pages
•	 The set of specifications for a web page
•	 Specifications could be sketches as other diagrams as well as statements
•	 A design of a web page
•	 The evaluation of the extent to which a web page meets specified objectives
•	 The comparison of two web pages
•	 The description of a technique
•	 The comparison of different techniques
•	 The design and implementation of a web page

Evaluate and Debug Web Page Implementation
•	 The explanation of how different design decisions might affect the users of the web page
•	 Identification of errors in web page code
•	 The explanation for an error and the explanation for the fix for that error

Assessment Design Patterns for Computational Thinking Practices 36

•	 Web page code with the fix implemented
•	 The resulting web page
•	 A description or list of the assignment of the workflow

Collaborative Web Design and Communication
•	 The resulting web page
•	 A description of the changes that were made and/or a description of how the comments were addressed
•	 A communication (could be power point, could be oral, could be written) about a web page
•	 A documentation of how each member of the group contributed to the communication

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 37

Unit 3 Assessment Item Example: Stella’s Shirts

• �FKSA 7: Ability to use techniques when designing and implementing a web-page

Assessment Design Patterns for Computational Thinking Practices 38

Unit 4: Introduction to Programming

Overview
This unit introduces students to some basic issues associated with program design and development.
Students design algorithms and create programming solutions to a variety of computational problems using
an iterative development process in a blocks-based language such as Scratch. Programming problems
include mathematical and logical concepts and a variety of programming constructs.

Focal KSAs

Programming Fundamentals
1.	 Ability to describe what is programming
2.	 Ability to create a set of specifications for a program given the intent of the program
3.	 Ability to explain the concept of a variable
4.	 Knowledge of the concept of a variable
5.	 Knowledge of Boolean logic

Algorithms in Programming
6.	 Ability to compare the tradeoffs between different algorithms for solving the same problem
7.	 Ability to create an algorithm that addresses a set of specifications

Programming Structures
8.	 Ability to describe features of a programming structure
9.	 Ability to evaluate the relationship between features of a programming structure and features of a

problem or algorithm
10.	 Ability to compare the tradeoffs between different programming structures for solving the same

problem

Programming Process
11.	 Ability to describe debugging and testing methods
12.	 Ability to evaluate debugging and testing methods in terms of how they relate to the problem or

program
13.	 Ability to use debugging and testing methods
14.	 Ability to generate test cases for a program

Evaluating Programs
15.	 Ability to state what a program would output given a set of inputs
16.	 Ability to explain the inputs of a program, command or object, how it operates on those inputs, and

Assessment Design Patterns for Computational Thinking Practices 39

what the outputs are
17.	 Ability to evaluate the extent/degree to which a program solves a stated problem
18.	 Ability to compare the tradeoffs between different programs for solving the same problem

Collaborative Programming and Communication
19.	 Ability to create a program as a group by distributing the workflow among group members then

combining the results
20.	Ability to use multiple sources of feedback to develop a program
21.	 Ability to communicate the objectives of a program, the design process and the program
22.	Ability to collaboratively communicate the objectives of a program, the design process and the

program

Characteristic Features

Programming Fundamentals
•	 The task must make it clear to the student that they should include a description of the programming

cycle.
•	 The task must include information on the intent of the program.
•	 The task must provide students with information about the algorithms and information about the problem

the algorithms are addressing.
•	 The task must include a set of specifications that can be used to generate an algorithm.

Algorithms in Programming
•	 The task must include a set of specifications that can be used to generate an algorithm.

Programming Structures
•	 The task must provide students with a programming structure.
•	 The task must provide students with a programming structure and information on a problem or algorithm.
•	 The task must provide the student with a problem or algorithm.

Programming Process
•	 The task must specify the problem or program that is to be tested.
•	 The task must provide the student with a program to debug and test.
•	 The task should provide a program that would allow for different test cases to be generated for it.

Evaluating Programs
•	 The task should provide a program and a set of inputs.
•	 The task should provide a program.
•	 The task should provide a program as well as a problem.
•	 The task must include information on the programs being compared.

Assessment Design Patterns for Computational Thinking Practices 40

Collaborative Programming and Communication
•	 The task must have 2 or more people creating a program.
•	 The task involves an already created program.
•	 The task must include feedback on that program.
•	 The task must specify the program to be used in the communication.
•	 The task must provide guidelines for the format and length of the communication.

Variable Features

Programming Fundamentals
•	 Format of the description
•	 Amount of detail required in the description
•	 Level of detail required of the specifications
•	 The intent of the program
•	 The format of the response
•	 Format of the explanation
•	 Amount of detail required of the explanation
•	 Whether the student is describing variables in general, or describing a variable in relation to a specific

program or problem
•	 The degree to which each algorithm solves the problem
•	 The degree to which the two algorithms are similar to one another
•	 The amount and type of information provided about the problem and the algorithms
•	 The required format of the description of the algorithm
•	 The level and amount of details of the provided specifications

Algorithms in Programming
•	 The required format of the generated algorithm
•	 The level and amount of details of the provided specifications

Programming Structures
•	 The programming structure that is being described
•	 The format of the description
•	 The level of detail required of the evaluation
•	 The degree to which the programming structure matches the features of the problem or algorithm
•	 The complexity of the problem or algorithm
•	 The level of detail required of the comparison
•	 The degree to which the programming structures match the features of the problem or algorithm

Assessment Design Patterns for Computational Thinking Practices 41

•	 Whether the student determines the programming structures to be compared or this is provided to them
•	 The degree to which the programming structures match each other

Programming Process
•	 The context for which students are describing these methods (generally, or in relation to a specific

problem)
•	 The level of details required of the description
•	 The debugging and testing methods that are being evaluated
•	 The problem or program used, and how well the methods relate to the problem or program
•	 The number and type of errors in the program
•	 Whether a description of the methods used is required
•	 The complexity of the program
•	 The required number of test cases to be generated

Evaluating Programs
•	 The complexity of the program
•	 The number of inputs
•	 The number of outputs
•	 The complexity of the program
•	 The complexity of the problem
•	 The degree to with the program addresses the problem
•	 The programs being compared
•	 The degree to which the programs differ

Collaborative Programming and Communication
•	 The number of members in a group
•	 The complexity of the program to be designed
•	 The level of specifications provided to the group
•	 The complexity of the feedback
•	 The amount of disagreement of the feedback
•	 The source of the feedback
•	 The complexity of the initial program
•	 The length of the communication
•	 Audience for the communication
•	 The level of detail asked for in the communication
•	 The format of the communication (PowerPoint, poster, oral, written…)
•	 The number of participants in the group

Assessment Design Patterns for Computational Thinking Practices 42

•	 Audience for the communication
•	 The length of the communication

Potential Observations

Programming Fundamentals
•	 Accuracy of the description of programming (i.e., Does the student explain the programming process as

an iterative process that includes designing, implementing and debugging?)
•	 Degree to which the specifications meet the intent of the program. (i.e., Are the inputs and outputs

identified in the specifications appropriate for the intent of the program?)
•	 Completeness of the specifications (i.e., Does the specifications include information on the boundary

statements? Is the level of details in the specifications enough to start generating pseudo code?)
•	 Accuracy of the explanation of the concept of a variable (i.e., Does the student identify when a variable

could be used? Does the student describe the purpose of a variable? Does the student relate variables
to programming?)

•	 Appropriateness of the comparison (i.e., Does the student include similarities and differences in the
algorithms? Does the student include an explanation with their comparison? Does the comparison
include information on relevant aspects of both algorithms? Does the comparison accurately reflect the
algorithms?)

•	 The correctness of the algorithm (i.e., Does the algorithm follow the specifications? Does the algorithm
produce the correct outputs for any set of inputs?)

•	 Completeness of the description (i.e., Does the description include information about all of the main parts
of the algorithm)

Algorithms in Programming
•	 The correctness of the algorithm (i.e., Does the algorithm follow the specifications? Does the algorithm

work in the boundary cases?)

Programming Structures
•	 Description of the features of a programming structure (i.e., Given a programming structure can the

student describe the purpose of the structure?)
•	 Appropriateness of the evaluation (i.e., Does the student include an explanation of how the features of

the programming structure match the problem or algorithm? Does the explanation accurately reflect the
features of the problem or algorithm and the features of the programming structure?)

•	 Appropriateness of the comparison (i.e., Does the student include an explanation for the benefits and
drawbacks of each of the programming structures which accurately reflects the features of the problem
or algorithm and the features of the programming structures?)

Programming Process
•	 Accuracy of the description of debugging and testing methods (i.e., Does the description cover multiple

Assessment Design Patterns for Computational Thinking Practices 43

aspects of debugging and testing? Is the description of particular methods correct?)
•	 Accuracy of the evaluation of debugging and testing methods (i.e., Does the student accurately describe

the type of information they will learn from the debugging and testing methods? Do the test cases cover
common errors and boundary cases?)

•	 Correctness of the resulting program (i.e., Does the program run correctly for all cases?)
•	 Accuracy of the description of which debugging and testing methods were used
•	 Appropriateness of the test cases (i.e., Do the test cases cover the boundary cases as well as the

general cases?)

Evaluating Programs
•	 Correctness of the output given a set of inputs
•	 Accuracy of the description of a program (i.e., Does the student correctly identify the inputs and outputs?

Does the student explain how the program operates on the inputs?)
•	 Appropriateness of the evaluation of the extent/degree to which a program solves a stated problem (i.e.,

Did the student consider the boundary cases as well as the general cases?)
•	 Appropriateness of the comparison of the tradeoffs (i.e., Does the student describe how each program

approaches the problem? Does the student describe cases for which the approaches differ and the costs
and/or benefits of these differences?)

Collaborative Programming and Communication
•	 Appropriateness of the division of workflow (i.e., Did all members have work to do? Was the work that

was assigned to each member appropriate and matches to that member’s skills?)
•	 Quality of the produced program (i.e., Does the program include all of the required pieces? Does it run

correctly?).
•	 Appropriateness of the revisions to a program based on provided feedback (i.e., Were all comments

addressed in some way? Were disagreements in feedback resolved?)
•	 Degree of collaboration (i.e., Did each member of the group contribute to the communication?)
•	 Clarity of the communication (i.e., Was the description understandable? Was the communication

organized?)
•	 Completeness of the communication (e.g., Did the communication address all of the sections of the

program? Was the description of the design process comprehensive?)

Potential Work Products

Programming Fundamentals
•	 Description of programming
•	 A set of specifications for a program
•	 The explanation of the concept of a variable
•	 The comparison of two algorithms
•	 The description of an algorithm

Assessment Design Patterns for Computational Thinking Practices 44

Algorithms in Programming
•	 An algorithm

Programming Structures
•	 The description of a programming structure
•	 The evaluation of the relationship between features of a programming structure and features of a

problem or algorithm
•	 The comparison of the programming structures

Programming Process
•	 Description of debugging and testing methods
•	 The evaluation of the debugging and testing methods
•	 A (corrected) program
•	 A description of the debugging and testing methods used
•	 Generated test cases

Evaluating Programs
•	 The list of outputs
•	 A description of a program
•	 The evaluation of the program
•	 Comparison of the tradeoffs between different programs

Collaborative Programming and Communication
•	 The resulting program
•	 A description or list of the assignment of the workflow
•	 A description of the comments and changes that were made and/or a description of how the comments

were addressed
•	 A communication (could be power point, could be oral, could be written) about a program
•	 Documentation of how each member of the group contributed to the communication

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 45

Unit 4 Assessment Item Example: Scratch Dancer

• FKSA 6 - Ability to describe features of a programming structure

• FKSA 10 – Ability to describe debugging and testing methods

• FKSA 13 - Ability to generate test cases for a program

• FKSA 14 - Ability to state what a program would output given a set of inputs

Assessment Design Patterns for Computational Thinking Practices in Exploring Computer Science 46

Unit 4 Assessment Item Example: Scratch Dancer (continued)

• FKSA 6 - Ability to describe features of a programming structure

• FKSA 10 – Ability to describe debugging and testing methods

• FKSA 13 - Ability to generate test cases for a program

• FKSA 14 - Ability to state what a program would output given a set of inputs

SRI Education, a division of SRI International, is tackling the most complex
issues in education to identify trends, understand outcomes, and guide policy and
practice. We work with federal and state agencies, school districts, foundations,
nonprofit organizations, and businesses to provide research-based solutions
to challenges posed by rapid social, technological and economic change. SRI
International is a nonprofit research institute whose innovations have created new
industries, extraordinary marketplace value, and lasting benefits to society.

Stay Connected

Washington, D.C.
1100 Wilson Boulevard, Suite 2800
Arlington, VA 22209
+1.703.524.2053

www.sri.com/education

Silicon Valley
(SRI International headquarters)
333 Ravenswood Avenue
Menlo Park, CA 94025
+1.650.859.2000
education@sri.com

SRI International is a registered trademark and SRI Education is a trademark of SRI
International. All other trademarks are the property of their respective owners.
Copyright 2015 SRI International. All rights reserved. 1/15

	Introduction
	Computational Thinking in Exploring Computer Science
	Evidence-Centered Design
	Moving from Design Patterns to Assessment Tasks
	Summary and Next Steps
	References
	Appendix A: Exploring Computer Science Design Patterns

